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Introduction

The traditional stress tensor for a viscous fluid

[ UmIoij + . Vj+ ] (I)

comprises terms representing the thermodynamic pressure, the

volume viscosity, and the shear viscosity. Unlike the shear

viscosity _, which can be derived from the Boltzmann Transport

Equation and thus lends itself to a microscopic interpretation

[i], the traditional volume viscosity A has no physical basis

and no relationship to established dissipative processes in

fluids. In other words, neither its value nor even its order of

magnitude can be predicted from the fundamental physical

properties of a given fluid. In order to circumvent this

obstacle to an orderly analysis of viscous flows, Stokes

hypothesized that the volume losses in fluids are negligibly

small [2] (which is true by definition for incompressible flows).

This so-called "Stokes hypothesis"

= -(2/3)_ (2)

has been utilized in a large volume of both experimental and

theoretical data in many classes of compressible convective

flows.

In nonconvective (periodic or acoustic) flow, on the other

hand, the point of view that volume losses are negligibly small

has no basis in fact, to which the vast literature on sound

absorption in fluids will attest. The underlying absorption

processes in gases and some liquids are well understood and known

to be attributable to a variety of relaxation processes, which

accordingly constitute the physical basis for the volume

viscosity. In gases the most prominent of these under ordinary

experimental conditions are the relaxations of the molecular

degrees of freedom.

The purpose of this memorandum is to close the longstanding

gap between acoustics and fluid dynamics with regard to

volumetric losses in fluids. We start out by reviewing the

fundamental physics of relaxation and its mathematical

representation. Then we apply the lossy Navier-Stokes Equation

to periodic (acoustic) flow and show that the traditional



expression for volume viscosity leads to a result which

contradicts that describing acoustical relaxation. We

demonstrate that the addition of a second volume viscosity term

resolves the conflict and leads to a direct correspondence

between the volume viscosity and the acoustic relaxation

parameters. We proceed to discuss the formulation of volume

viscosity in the presence of multiple relaxations. Finally, we

present an example of the role of volume viscosity in a

convective compressible flow. Although our discussion will be

confined to gases, our analysis and conclusions will apply

equally well to liquids since the mathematical representation of

relaxation is the same in both media.
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real part of sound speed

complex sound speed

relaxed sound speed

real part of acoustic wave number

length scale for linearly accelerating flow

length of contraction section

Mach number

thermodynamic pressure

thermodynamic pressure at x=0

relaxed pressure

pressure increment due to kth relaxation

reduced pressure, equation (37)

amplitude of acoustical pressure variation

Reynolds number, equation (32d)

time

time scale for pressure relaxation, equation (32c)

one-dimensional flow velocity

reduced flow velocity, equation (32a)

ith component of flow velocity

exit flow velocity of contraction section

upstream flow velocity

spatial coordinate

ith component of spatial coordinate

reduced distance, equation (32b)

mole fraction of gas constituent

imaginary part of acoustic wave number

relaxation strength

pressure relaxation coefficient

density relaxation coefficient



A

p(x)

Co
p(x)

aR(X)
APk(X)

oij
T

Tps

TVS

reduced density relaxation coefficient, equation (32e)

traditional volume viscosity coefficient

acoustical wavelength

shear viscosity coefficient

gas density

equilibrium gas density

amplitude of acoustical density variation

relaxed density

density increment due to kth relaxation

stress component

experimental relaxation time, equation (llb)

isentropic relaxation time at constant pressure

isentropic relaxation time at constant volume

(density)

acoustical angular frequency

Numerical Subscripts

indicates stress component (i,j,m = 1,2,3)

indicates relaxation process (k = 1,2,...)

Mathematical Operators

D/Dt

6ij

0( )

= 8�at + ua/ax, one-dimensional total time

derivative

= 0 if i_j, = 1 if i=j, Kroniker delta

indicates order of magnitude

Acoustic Relaxation in Gases

The following derivation of the acoustic relaxation equations

is based on small periodic (harmonic) variations, one-dimensional

propagation, and a single relaxation process. The equations of

motion

au ap

Po 0t ox (3)

and continuity

au 1 8p

ax Po at
(4)

lead to a quasi-wave equation
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8 2 F 8 2p

8 t 2 8 x 2
(5)

which is satisfied by travelling wave solutions of the form

%" ei(_t_kx )p = p (6a)

%" ei(_t-kx )p = p (6b)

When we insert (6a) and (6b) into the acoustical equation of

state [3]

8 1 8

(1 + rps _--_)p = -- (1 + rvs _-_)p
Co2

(7)

%, %"

we obtain the ratio p/p, which is the the reciprocal complex

sound speed squared:

%"

1 1 l+i_rvs
%" - - + o(_2) (8)
p o 2 Co2 l+i_rps

Upon separating equation (8) into real and imaginary parts, we

isolate the terms representing the sound dispersion (real) and

absorption (imaginary):

Co2 _2rps2 _rps
-- = 1 - ( i( + 0((2)

o 2 l+_2rps2 l+_2rps2

or, equivalently

(9)

0 2 _ _2r2 ( _r
--= i + + i + 0((2)

Co2 i-( l+_2r 2 _i-( l+_2r 2
(io)

As indicated in equations (9) and (I0), a single relaxation

process contains two defining parameters, a "relaxation strength"

and a "relaxation time." The parameters used in phenomenological

theories of relaxation are the isentropic relaxation times at

constant pressure rps and at constant volume rvs , but those

obtained from acoustical measurements are the relaxation strength

( and a third relaxation time r. The parameter pairs are

interrelated by
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r ps-r vs

- (lla)
rps

! (llb)
T = _ rps 7vs

or conversely,

rps = r/]l-_ (12a)

rvs = rJl-_ (12b)

The relaxation strength is a measure of the capacity of the medium

to convert translational energy of the flow into internal energy.

It can be evaluated with great precision from known thermodynamic

properties of the medium. The relaxation time is a measure of

the rapidity with which the medium reacts to changes in

translational energy. Because microscopic theories of the

relaxation time are generally imprecise, quantitative evaluation

depends on experiment. Information on the relaxation processes

occurring in air are given later in this memorandum.

It is important to note that the relaxation strength depends

upon the difference between rps and rvs , a fact not taken into

account in previous treatments of the volume viscosity.

The real part of equation (i0) yields the dispersion of the

sound speed squared, shown in the plot of figure i. The

"dispersion step" has a height of _/(i-_), equal to the

difference between the low and high frequency limiting solutions

of the plot, and an inflection point where the condition wr=l is

fulfilled.

The imaginary part of equation (i0) yields the sound

absorption per unit wavelength:

Co2 _ _r

_A - -- (13a)
c 2 j_-_ i+_2r2

RE WT

= -- + 0(_ 2 ) (13b)



The plot of equation (13b) in Fig. 2 shows an absorption peak of

height z(/(2 _i-() and a location at _r=l.

Both plots reveal that a relaxation process is ineffective at

very low frequencies, where the internal degrees of freedom have

ample time to equilibrate with translation, and at very high

frequencies, where changes in translation occur too rapidly for

equilibration to take place. In convective compressible flows,

then, the volume viscosity would be expected to be most effective

on time scales on the order of the relaxation time r.

Traditional Volume Viscosity and Application to Acoustics

We observe that the acoustical wave equation (5) does not

contain a dissipative term. Dissipation is accounted for in the

complex sound speed, which is derived from the acoustical

equation of state (7). The introduction of a physically

meaningful volume viscosity implies a transfer of the relaxation

terms from the equation of state to the Navier-Stokes Equation.

Then, the equation of state will serve simply to determine the

stationary temperature of the medium.

To investigate the case of damped acoustical propagation, let

us insert the traditional stress tensor [equation (1)] into the

one-dimensional Navier-Stokes Equation, retaining only the

dilatational terms. In place of equation (3) we obtain

au a°ll ap a2u
= = --- + (14)

PO _ aX aX ax 2

where for one-dimensional propagation

_v = A+2B (15)

Equation (14) together with the continuity equation (4) leads to

the lossy wave equation:

a2p _v 83p a2p

8t 2 Po ax2at ax 2
(16)

Solutions of the form (6a) and (6b) yield the complex sound

speed:
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p c 2

k 2

w2-i_ (_v/Po) k2

(17)

from which

Co2 _ 2 r/v2/p 02 C04 _ rlv/P oCo 2
- 1 - + i + 0((2)

C 2 l+w 2 I,/v2/p02 Co4 I+_ 2 _V 2/p 02 Co4

(18)

A term-by-term comparison between equations (18) and (9) reveals

that the quantity _v/PoCo 2 can be identified with -Tps, but that

the two equations are compatible only if (=l--an absurd

conclusion, for Kneser proves that the relaxation strength of a

diatomic gas is bounded by (<0.082 for the vibrational relaxation

and (<0.16 for the rotational relaxation [4]. Therefore, we

conclude that the volume viscosity cannot be represented by the

traditional constitutive equation (i), containing only a single

term.

New Constitutive Equation for the Volume Viscosity

Taking a cue from the acoustical equation of state (7), we

hypothesize that the second volume viscosity term is proportional

to the time derivative of the pressure. Then the stress tensor

becomes

Dp #Um ] [au i aUjo .... + "[7 xj÷ij P _p _- "V ax m 2 SUm ]3 ax m 6ij
(19)

where for one-dimensional flow the factor 2/3 is replaced by 2,

and the operator

D S S
-- + U --

Dt St a x

is used to allow for pressure changes in convective flow. Let us

examine the acoustical consequences. When we substitute the

nonconvective dilatational terms of (19) into the one-dimensional

Navier-Stokes Equation, we now obtain

au 8°11 Sp a2u 82p

= = - -- + _v -- + _p
PC _ ax ax ax 2 sxat

(20)

and the lossy wave equation becomes
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82p _v 8 3p

8t 2 Po #x28t

82p 83p

=--- _p
8x 2 8x28t

(21)

As before, solutions of the form (6a) and (6b) lead to the

complex sound speed

1 k2-i_k2_p 1 l-i_p
- _ =- + 0(_ 2)

p ¢2 _2-iw (flv/Po) k2 Co2 1-i_v/PoCo 2

(22)

Comparison of the complex sound speed derived from the volume

viscosity [equation (22)] with that derived from the acoustical

equation of state [equation (8)] yields the volume viscosity

parameters in terms of the acoustical relaxation parameters:

tip = -_VS

_v = -PoCo2Tps

(23a)

(23b)

Both _p and _v are negative quantities in order to provide the

proper phase relationships when equation (21) is applied to

acoustic flow.

Volume viscosity and pressure relaxation cannot be modeled

adequately via a single constitutive constant. The difficulty

is due to the more fundamental character of pressure, in

comparison to either volumetric viscous effects or shear

stresses. Since pressure is accepted universally as a

thermodynamic variable which can be used in the determination of

other thermodynamic properties, it is not logical to force

pressure to be related directly to the material rate of change

of density, through the conservation of mass equation and a

single volume viscosity coefficient. Furthermore, it is not

logical to assume that pressure and density are determined

uniquely for unsteady flows of simple fluids through an

equilibrium equation of state, if those fluids possess internal

degrees of freedom (which equilibrate at different rates). These

relaxation effects are easily visualized in terms of the behavior

of air when it is subjected to high frequency acoustic

excitations. It is certainly evident that the temporal behavior

of the density, produced by these acoustic oscillations, does

not correspond to that produced by a reversible, quasi-static,

cyclic equilibrium process. In fact, it is known that pressure

must respond more rapidly to these propagating disturbances than

density because the disturbances consist primarily of collisional

8



exchanges of translational momentum, and pressure is a direct

measure of translational momentum. Furthermore, since the

nitrogen and oxygen molecules in air possess internal degrees of

freedom that equilibrate more slowly than their translational

counterparts, acoustically excited air is forced to exist in a

regime where density and pressure are no longer in phase with

each other, and temporal variations in internal molecular

temperatures can be substantially different from their

translational temperature histories. While it may be possible to

ignore volume viscosity contributions completely, via Stokes'

hypothesis, it is not possible to ignore these phase shifts

between density, temperature(s), and pressure that are manifest

by these fundamental departures from thermodynamic equilibrium.

If pressure equilibrium is enforced by an idealized equation of

state, then the pressure is modified improperly via the

traditional volume viscosity. It is certainly true that the

pressure relaxation constant, introduced in our constitutive

model, can be used along with volume viscosity; but, even

further, it is quite possible that the pressure relaxation

constant follows only the dynamic viscosity in importance as a

constitutive constant.

Multiple Relaxations

The volumetric dissipation in many gases, notably air, is

characterized not by one relaxation but by multiple relaxations

occurring simultaneously. For the acoustical case Bauer shows

that the effects of the individual relaxation processes upon the

compressibility, as evidenced by the dispersion and absorption

terms in equation (9), are additive [3]. The treatment here for

generalized flow, then, is similarly based on the assumption that

the effects of the individual relaxation processes are additive.

A discussion of coupling among the relaxation processes appears

at the end of this section.

We define PR(X) and PR(X) as the "relaxed" pressure and

density, i.e. the solutions obtained without losses. Then we

assume that the pressure p(x) and density p(x) are composed of

the relaxed contribution plus the sum of the contributions from

all the relaxation processes. If the gas is a mixture, then each

contribution must be multiplied by the mole fraction X k of the

relaxing component of the mixture:

9



p(x) = PR(X) + _ XkaPk(X),
k

k = I, 2, ... (24a)

p(x) = PR(X) + _ XkAPk(X )

k

(24b)

where _Pk(X) and _Pk(X) are the changes in pressure and density

due to the kth relaxation alone. These changes are not

necessarily perturbations and can, in fact, be very large. If

Pk(X) and Pk(X) are solutions to Navier-Stokes Equation for the

kth single relaxation process alone, using equation (19), then

the changes are simply

_Pk(X) = Pk(X) - PR(X) (25a)

APk(X ) = Pk(X) - PR(X) (25b)

The above procedure is based on the condition that the

presence of one relaxation process does not influence the effects

due to another; in other words, the relaxations are decoupled.

In reality this is not the case, for there are two types of

coupling among the individual relaxations: gas-kinetic and

nonlinear.

Gas-kinetic coupling arises from the fact that the reactants

and products of molecular reactions can appear in more than one

reaction. The relaxation times rps k and _vsk are no longer those

of the decoupled kth relaxation alone. Rather they are

determined from the solutions to a set of linear simultaneous

equations involving all the coupled reactions. Since the

coupling is linear, the formulation expressed by equations

(24)-(25) remains valid; only the values of rps k and Tvs k have to

be adjusted. For air this subject is treated in reference 5.

The second type of coupling is due to the nonlinear nature of

the convective operator ua/ax. When operating on equation (24),

it will introduce mixed terms in the Navier-Stokes Equation.

Additional terms will be required in the series to account for

the mixing. Generally, it may be expected that the volumetric

losses and pressure and density changes are sufficiently small to

permit equations (24)-(25) to remain very accurate approximations

for most gases.
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An Example= Linearly Accelerating Flow

In order to examine the behavior of this constitutive model,

it is convenient to examine a class of steady, one-dimensional

flows. That class of flows includes flows through standing

normal shock waves, but we are interested here in flows which are

more typically encountered in the subsonic contraction sections

of wind tunnels. If the velocity is given by u = u(x), the

material or total time derivative is given by

D d

-- U--

Dt dx

and conservation of mass requires that

d

-- (pu) = 0 (26)
dx

Thus, if we assume that the density and velocity are prescribed

at the coordinate origin--say Po and Uo--Conservation of mass

is equivalent to the requirement

p(x) u(x) = PoUo (27)

Conservation of linear momentum can be written

du d do 11

PU_x = _X (pOUOu) = dx (28)

and if we assume that Oli(0 ) = -Po, equation (28) can be

integrated to yield

°ll(X) = -Po - poUo[Uo-U( x)] (29)

which is a kinematical relationship not affected directly by the

constitutive model.

The constitutive model can be examined via the kinematical

equation for normal stress. That is, Oli must satisfy the

relationship

dp du
= -- + _V-- =O11(X ) -p(x) + _pU dx dx -Po - PoUo(Uo-U) (30)

Before proceeding to the particular flow case, it is useful to

distinguish between "lossless" pressure variations (where _p, _v,

and _ are taken to be zero) and "lossy" effects. That is, we
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define A_(X) :

_p(x) =
p(x) - Po - PoUo(Uo-U)

p oU ° 2

and introduce the reduced and dimensionless variables

(31)

= u/U o

= x/L

T = -TpUo/L = MCorvs/L

R e = P oUoL//_ = P oMCoL//_

K = -_v//j = PoCo2Tps//_

(32a)

(32b)

(32c)

(32d)

(32e)

Then, our constitutive model must satisfy

A_ =-Tu(dd_/d_) + (Tu- K/Re)(du/d_) (33)

For simplicity, we consider linearly accelerating flow

systems, where:

_.(_) = i + (34)

We note that in the case of this "contoured" wind tunnel

contraction flow, the characteristic length L is related to the

length of the contraction section Lma x and the exit velocity U e
by:

L m

Lmax Uo U e - U o
, with 0 _ x

U e - U o U e
(35)

Here the lossless or "relaxed" pressure would decrease linearly

(from Po) with _:

PR = Po - _ (36)

where the overbar indicates a reduced pressure

= P/P oUo 2 (37)

The reduced lossy pressure variation can be gotten by

integrating equations (33) and (34), with A_(0) = 0, to get:

Ap = -- X + (Z+X)-Z/T - i (38)
T+I e T+I

12



which yields the interesting relation that volume viscosity will

cause _ to be negative, since (i+_)-i/T - 1 is negative for

_>0; whereas the pressure lag contributes an additional effect

which is positive rather than negative. Since _ = -K/Re, when

T=0, the pressure lag effect changes the lossy pressure behavior

fundamentally, by eliminating the instantaneous and constant

_p contribution, and introducing a contribution which is

initially zero and becomes positive.

The significant relaxing degrees of freedom in air are the

vibration of N2, vibration of 02, rotation of N 2 and 02 taken

together, and translation of all constituents. For relatively

long time scales (>i Us) only the two vibrational relaxations

need be considered. Applying equation (38) together with (24a)

and designating N 2 and 02 with subscripts "N" and "X," we find

for the reduced pressure:

p(x) = Po + XN x +
1

TX - [KX
+ X x x+TTI &] (39)

Values for the relaxation times and relaxation strengths for

N 2 and 02 are taken from reference 6. Then equations (12a,b) and

(23a,b) are used to find rps , rvs , _p, and _v- These are listed

for a temperature of 20°C and humidity values of 0 and 1 mole

percent in table i. Because of the small relaxation strengths of

N 2 and 02, both rps and rvs are nearly equal to the

experimentally determined relaxation time r for each gas

constituent.

Equation (39) is plotted in figures 3 and 4 for a temperature

T = 20°C, length scale L = im, and absolute humidities h = 0 and

1 mole percent, respectively. The terms T/(T+I) related to

pressure relaxation lead to a positive pressure increment, while

the terms _/Re related to the traditional volume viscosity lead

to a negative pressure increment (or decrement). A net pressure

decrement is possible only if the volume viscosity terms exceed

the pressure relaxation terms, as occurs at subsonic Mach

numbers. In fact, at a speed Mach 0.9 the decrement turns into

an increment at a reduced distance _ - 0.4 - 0.5. At Mach 1 and

higher the increment is positive over the whole range of reduced

13



distance. Unlike the acoustical case, there do not appear to be

readily discernible conditions for which the increment reaches a

maximum.

Conclusions

The traditional volume viscosity cannot be given the same

fundamental status as dynamic viscosity. Not only does the

traditional volume viscosity fail to evolve naturally from kinetic

theory, but we have presented explanations showing that the volume

viscosity coefficient must represent multiple molecular

relaxation processes, including volumetric dissipation,

simultaneously when the conventional Newtonian-fluid model is

used. Furthermore, because of the direct relationship between

the divergence of the velocity vector and the particle rate of

change of density, volume viscosity in effect forces normal

stresses, including pressure, to be modeled in a manner which is

inconsistent with the more rigorous requirements resulting from

nonequilibrium acoustic equations of state. We have proposed

that a pressure relaxation contribution be added directly to the

constitutive model for normal stresses, in order to bring the

constitutive model into better agreement with accepted

nonequilibrium behavior.

Using accepted acoustical theory, we have estimated the

values for the pressure relaxation coefficients and volume

viscosities in pure nitrogen and oxygen at 20°C. Those

estimates indicate that the nitrogen contributions are nearly an

order of magnitude larger than the oxygen contributions, but both

coefficients are influenced strongly by humidity. Our estimates

show that the volume viscosity is several million times larger

than the dynamic viscosity for perfectly dry nitrogen, but the

ratio of volume to dynamic viscosity decreases by a factor of 32

at moderately high humidity levels (at 20Oc). In addition, if

pressure fluctuations are on the order of 1 Pa/s, the pressure

relaxation contribution to normal stresses is nearly an order of

magnitude larger than the volume viscosity contribution, when the

modified constitutive model is employed.

The application to a simple problem in one-dimensional

convective flow reveals that there are conditions for which the

volumetric losses in air are negligible (low Mach number,

moderate humidity), in agreement with the Stokes' hypothesis, but

other conditions for which they are substantial (high Mach

number, low humidity). The latter case suggests caution to the

14



advocates of the popular notion that computers will replace wind

tunnels, for a computational algorithm is effective only to the

extent that it incorporates the significant physical

interactions. A computation ignoring or misrepresenting

volumetric losses may fail to predict effects which would be

observed in wind tunnel tests•

The constitutive model proposed here should apply equally

well to liquids, since the acoustical equation of state is the

same as for gases [7]. The constitutive coefficients can be

determined from acoustical relaxation data through equations

(23a-b). Then the volumetric losses due to thermal relaxation

[8], for example, can be computed for convective flow in liquids.

References

• Hirschfelder, J. O.; Curtiss, C. F.; and Bird, R. B.:

Molec_arT_o_o/Gasesandit_uMs. John Wiley and Sons, Inc.,

1954, p. 480.

• Schlichting, H.: Bou,_a_-tayerT_o _. McGraw-Hill Book

Company, 1987, p. 60.

• Bauer, H. J.: "Phenomenological Theory of the Relaxation

Phenomena in Gases," Phys_Zcoustics[]_ W. P. Mason, editor,

Academic Press, 1965, p. 65.

4. Kneser, H. O. : "Relaxation Processes in Gases," Physical

Zcoustics[[A. w. P. Mason, editor, Academic Press, 1965, p.141.

o Zuckerwar, A. J.; and Miller, K. W.: "Vibrational-

Vibrational Coupling in Air at Low Humidities," J.

S.c. Am. 84, pp. 970-977, 1988.

Acoust.

• ANSI SI.26-1978, "American National Standard Method for

Calculation of the Absorption of Sound by the Atmosphere,"

Acoustical Society of America, New York, 1981.

• Lamb, J.: "Thermal Relaxation in Liquids," ehys_AcousHcs

]IA. W. P. Mason, editor, Academic Press, 1965, p. 218.

• Nettler.n, R. E.: "Thermodynamics of Viscoelasticity in

Liquids," Phys. Fluids 2, pp. 256-263, 1959.

15



Table i. Volume Viscosity Parameters for N 2 and 02 at 20°C.

Humidity, mole percent

Air constituent

Parameter Unit

0 1

N2 02 N 2 02

Relaxation strength

Relaxation times

_ps

TVS

Volume viscosity _p

coefficients _v

Mole fraction X

Us

Us

Us

0.00016 0.0032 0.00016 0.0032

17700 6630 551 5.37

17700 6640 551 5.38

17700 6620 551 5.36

Us -17700 -6620 -551 -5.36

Pa.s -2512.6 -943.6 -78.24 -0.764

0.79 0.21 0.79 0.21
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